Skip to main content

What is reordering and how does Volatile help?


Following excerpt is from JSR 133 (Java Memory Model) FAQ

What is meant by reordering of instructions?

There are a number of cases in which accesses to program variables (object instance fields, class static fields, and array elements) may appear to execute in a different order than was specified by the program. The compiler is free to take liberties with the ordering of instructions in the name of optimization. Processors may execute instructions out of order under certain circumstances. Data may be moved between registers, processor caches, and main memory in different order than specified by the program.

For example, if a thread writes to field a and then to field b, and the value of b does not depend on the value of a, then the compiler is free to reorder these operations, and the cache is free to flush b to main memory before a. There are a number of potential sources of reordering, such as the compiler, the JIT, and the cache.

The compiler, runtime, and hardware are supposed to conspire to create the illusion of as-if-serial semantics, which means that in a single-threaded program, the program should not be able to observe the effects of reorderings. However, reorderings can come into play in incorrectly synchronized multithreaded programs, where one thread is able to observe the effects of other threads, and may be able to detect that variable accesses become visible to other threads in a different order than executed or specified in the program.

What happens with a volatile variable?

The visibility effects of volatile variables extend beyond the value of the volatile variable itself. When thread A writes to a volatile variable and subsequently thread B reads that same variable, the values of all variables that were visible to A prior to writing to the volatile variable become visible to B after reading the volatile variable. 

So from a memory visibility perspective, writing a volatile variable is like exiting a synchronized block and reading a volatile variable is like entering a synchronized block. The thing to remember is that while locking (synchronization) can guarantee both visibility and atomicity; volatile variables can only guarantee visibility.

You can use volatile variables only when all the following criteria are met:
  • Writes to the variable do not depend on its current value, or you can ensure that only a single thread ever updates the value;
  • The variable does not participate in invariants with other state variables; and
  • Locking is not required for any other reason while the variable is being accessed.
For differences in volatile and synchronization, see this excellent article.

Comments

Popular posts from this blog

How to upload to Google Cloud Storage buckets using CURL

Signed URLs are pretty nifty feature given by Google Cloud Platform to let anyone access your cloud storage (bucket or any file in the bucket) without need to sign in. Official documentation gives step by step details as to how to read/write to the bucket using gsutil or through a program. This article will tell you how to upload a file to the bucket using curl so that any client which doesn't have cloud SDK installed can do this using a simple script. This command creates a signed PUT URL for your bucket. gsutil signurl -c 'text/plain' -m PUT serviceAccount.json gs://test_bucket_location Here is my URL: https://storage.googleapis.com/test_sl?GoogleAccessId=my-project-id@appspot.gserviceaccount.com&Expires=1490266627&Signature=UfKBNHWtjLKSBEcUQUKDeQtSQV6YCleE9hGG%2BCxVEjDOmkDxwkC%2BPtEg63pjDBHyKhVOnhspP1%2FAVSr%2B%2Fty8Ps7MSQ0lM2YHkbPeqjTiUcAfsbdcuXUMbe3p8FysRUFMe2dSikehBJWtbYtjb%2BNCw3L09c7fLFyAoJafIcnoIz7iJGP%2Br6gAUkSnZXgbVjr6wjN%2FIaudXIqA

Running Apache Beam pipeline using Spark Runner on a local standalone Spark Cluster

The best thing about Apache Beam ( B atch + Str eam ) is that multiple runners can be plugged in and same pipeline can be run using Spark, Flink or Google Cloud Dataflow. If you are a beginner like me and want to run a simple pipeline using Spark Runner then whole setup may be tad daunting. Start with Beam's WordCount examples  which help you quickstart with running pipelines using different types of runners. There are code snippets for running the same pipeline using different types of runners but here the code is running on your local system using Spark libraries which is good for testing and debugging pipeline. If you want to run the pipeline on a Spark cluster you need to do a little more work! Let's start by setting up a simple standalone single-node cluster on our local machine. Extending the cluster is as easy as running a command on another machine, which you want to add to cluster. Start with the obvious: install spark on your machine! (Remember to have Java a

java.lang.IllegalArgumentException: Malformed \uxxxx encoding

I was getting this exception during build while running ant. Googling didn't help much and I was flummoxed because the same code was running fine till now. My code reads a text file and does some operations on the basis of values read. It was only when I saw the text files I understood the error. I had copied the text in wordpad and saved it as .txt file. Wordpad had put lot of formatting information before and after the content. Also there was "\par" after every line, which was giving this error. So moral of the story: if you get this exception check your properties file (or any other file that your code might be reading.)